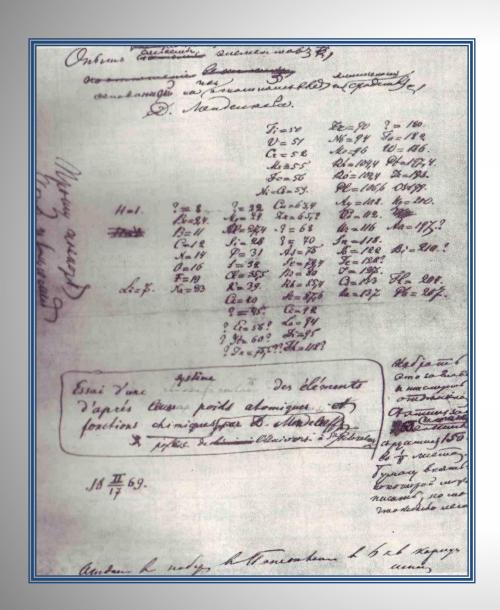
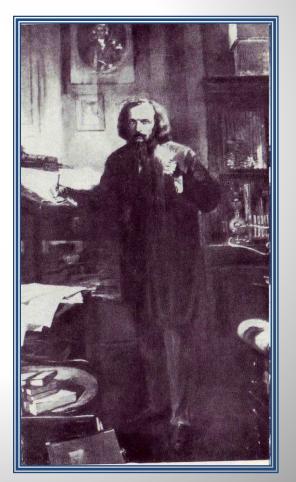

ПЕРИОДИЧЕСКИЙ ЗАКОН Д.И. МЕНДЕЛЕЕВА. ПЕРИОДИЧЕСКАЯ СИСТЕМА


. (/ .W.		//-	an-osp.	10-mp.	sond.
Na = 80	K = 39	Pl= 85,4	G=133	H=204.	
J=19	Q=35,5	13z= 80	J=127.		42
0 == 16	1=32	de= 23,4	Fe= 123.	•	
N= N	P=31 15	A4 20	St = 122.	Bi= 20	
C=12				PE XEX R.	DENOSONA
3=11	Al-ly	HEXXX	ll = 116!	he = 19%.	7
Be=9,4	My=24	2a 65,00	C=1/2.		


Д. И. Менделеев, сопоставляя свойства различных элементов и их соединений, обнаружил систематическую повторяемость этих свойств при увеличении атомной массы элемента (1869 г.).

- 1. Элементы, расположенные по возрастанию их атомного веса, представляют явственную периодичность свойств;
- 2. Сходные по свойствам элементы имеют или близкие атомные веса (Os, Ir, Pt), или последовательно и однообразно увеличивающиеся (K, Rb, Cs);
- 3. Сопоставление элементов или их групп по величине атомного веса отвечает их т.н. валентности;

- 4. Элементы с малыми атомными весами имеют наиболее резко выраженные свойства, поэтому они являются типическими элементами;
- 5. Величина атомного веса элемента может быть иногда исправлена, если знать аналоги данного элемента;
- 6. Следует ожидать открытия ещё многих неизвестных элементов, например, сходных с Al или Si, с паем (атомной массой) 65-75.

Все известные в то время элементы он представил в виде таблицы.

Периодическая система Д.И. Менделеева

СТАНДАРТНАЯ ПЕРИОДИЧЕСКАЯ ТАБЛИЦА ИЮПАК

	s-элем	г енты	,												р-элем	енты		
	1																	18
1	Н	2											13	14	15	16	17	He
2	Li	Be					d-элем	енты	ı				В	С	N	0	F	Ne
3	Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	Р	S	CI	Ar
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
5	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
6	Cs	Ba	*	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
7	Fr	Ra	**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
									f-3)	пемен	ты							
*л	антан	оиды	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
**	актин	оиды	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	•

Современная формулировка периодического закона элементов Д. И. Менделеева:

Свойства элементов и их однотипных соединений находятся в периодической зависимости от заряда атомных ядер элементов.

- Теоретические выводы на основе сравнения электронных конфигураций атомов:
 - 1. Строение внешней оболочки атома является периодической функцией зарядового числа атома Z.

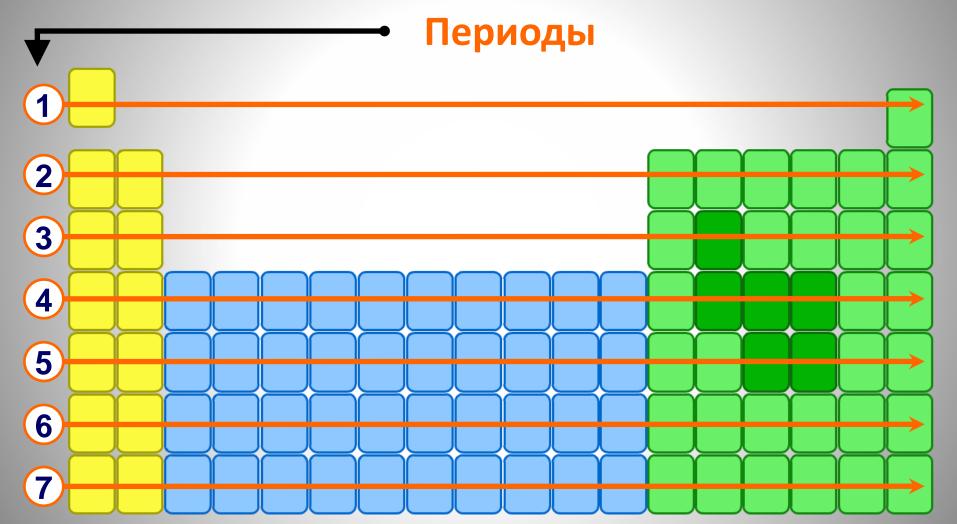
2. Химические свойства элементов находятся в периодической зависимости от заряда ядра (поскольку химические свойства атома определяются строением внешней оболочки атома).

3. Номер периода в системе элементов Д.И. Менделеева равен номеру *п* энергетического уровня внешних *п* орбиталей, заполняемых в этом периоде.

 Таким образом, по электронной формуле внешней оболочке атома можно определить, к какому периоду относится элемент, если даже о свойствах этого элемента ничего не известно. 4. Число элементов в периоде, т. е. его длина, равно удвоенному числу внешних орбиталей, заполняемых в этом периоде.

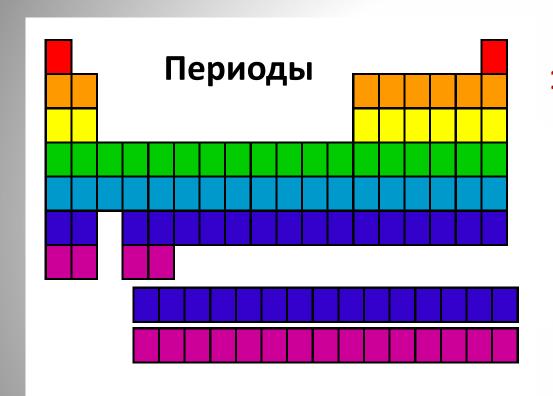
5. В одну группу периодической системы входят элементы с однотипной электронной конфигурацией внешней оболочки атомов.

ПЕРИОДИЧЕСКВЯ СИСТЕМВ ЭЛЕМЕНТОВ Д.И. МЕНДЕЛЕЕВВ


ПЕРИОДЫ		Г	р у	пп	ы	э л	E M	Е Н Т О В	
ПЕРИОДЫ	I	I II		IV V		VI VII		VIII	
1	H 1,008						(H)		2 4,003 He
2	3 Li 6,94	201 9,01	5 10,81	12,01	7 14,01	8 16,0	9 F 19,0		10 Ne
3	Na ¹¹	Mg ¹²	13 81,98	14 81,09	15 30,91	16 32,06	17 35,45		18 39,95
4	K 19	Ca 20	SC 21	Ti 22	¥ 23 50,9	Cr ²⁴	Mn ²⁵	Fe 26 Co 27 Ni 28	
	29 63,55	30 Zn	31 69,1	32 12,59	33 14,92	34 18,95	35 19,9		36 Kr
5	37 Rb 85,41	38 81,6	Y	Zr	Nb 41	MD	Tc 43	Ru 101,1 Rh 102,9 Pd 106,4	
	47 101,9 Ag	48 Cd 112,4	49 114,8 ln	50 118,1	51 Sb 121,75	52 121,6	53 126,9		54 131,3
6	CS 132,9	Ba ⁵⁶	La	HT	丁型 73	W 74 183,8	75 Re _{186,2}	Os 76 or 77 Pt 78	
	79 _{196,9} Au	500'e Ha	81 204,4	82 201,2 Pb	83 83 8,805	84 (210)	85 (210) At		86 Rn
7	Fr (223)	88 E31	** 89 Ac (221)	Rf ¹⁰⁴	Db ¹⁰⁵	Sg (263)	Bh ¹⁰⁷	Hs ¹⁰⁸ Mt ¹⁰⁹	

* ЛАНТАНОИДЫ

** АКТИНОИДЫ


			64 Gd				
			96 C m				

Период - горизонтальная последовательность элементов, атомы которых имеют равное число энергетических уровней, частично или полностью заполненных электронами

Периоды

1^{ый} Период = **1** Подуровень

2^{ой} Период = **2** Подуровня

3^{ий} Период = 3 Подуровня

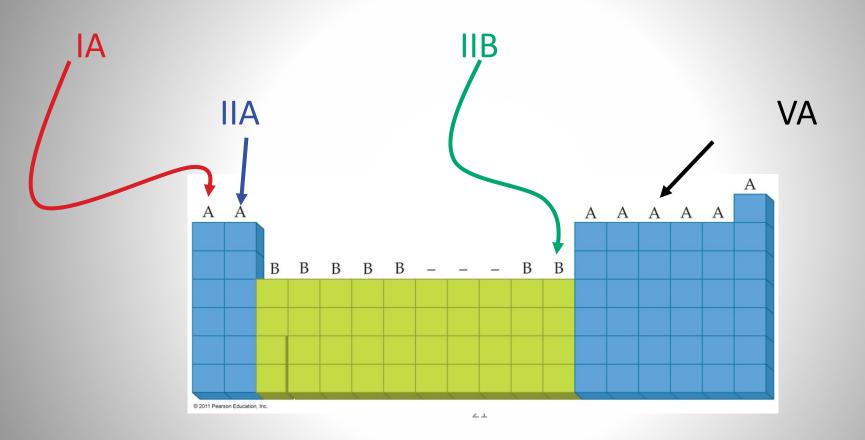
4ый Период = **4** Подуровня

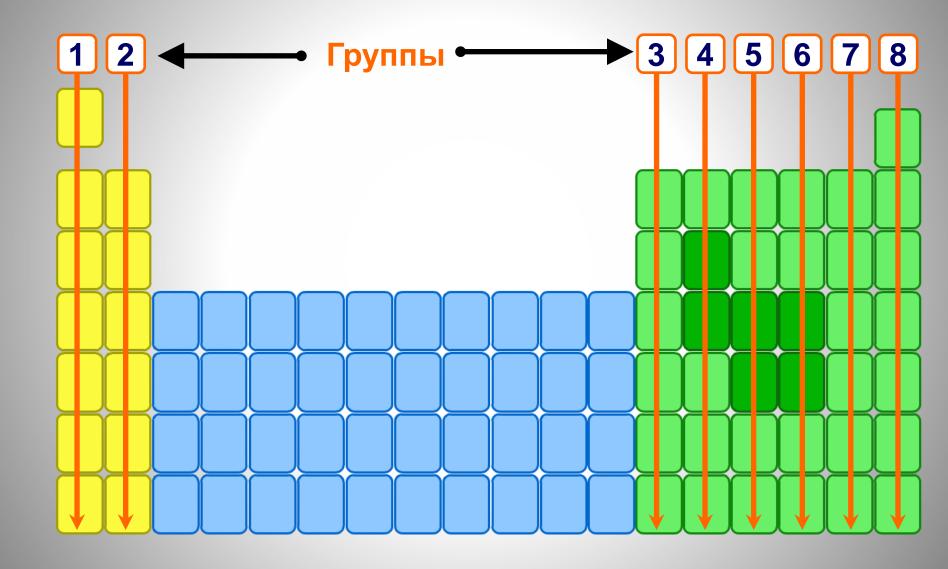
Короткие периоды

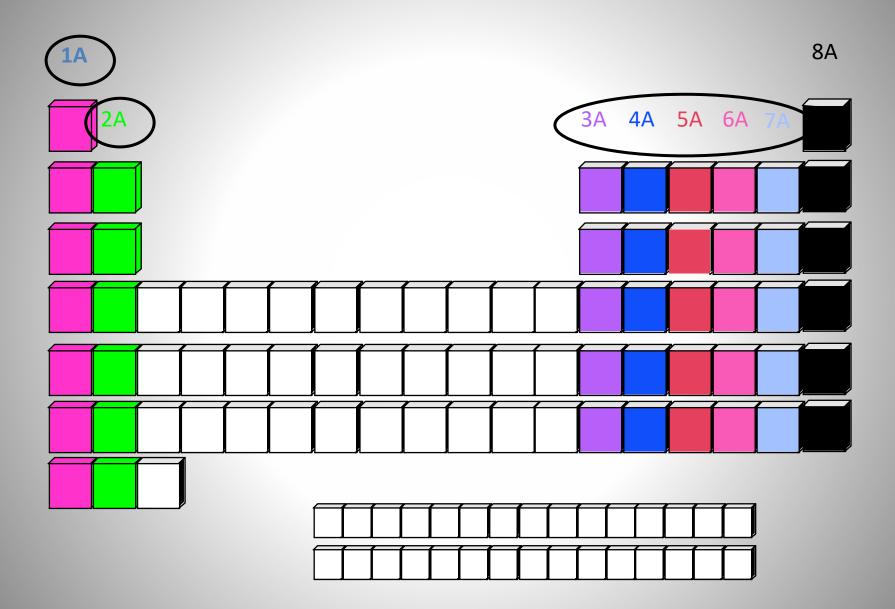
- 1 период (n=1): 2 элемента (1s¹⁻²)
- 2 период (n=2): 8 элементов (2s ¹⁻²2p ¹⁻⁶)
- 3 период (n=3): 8 элементов (3s¹⁻²3p ¹⁻⁶ 3d ⁰)

Длинные периоды:

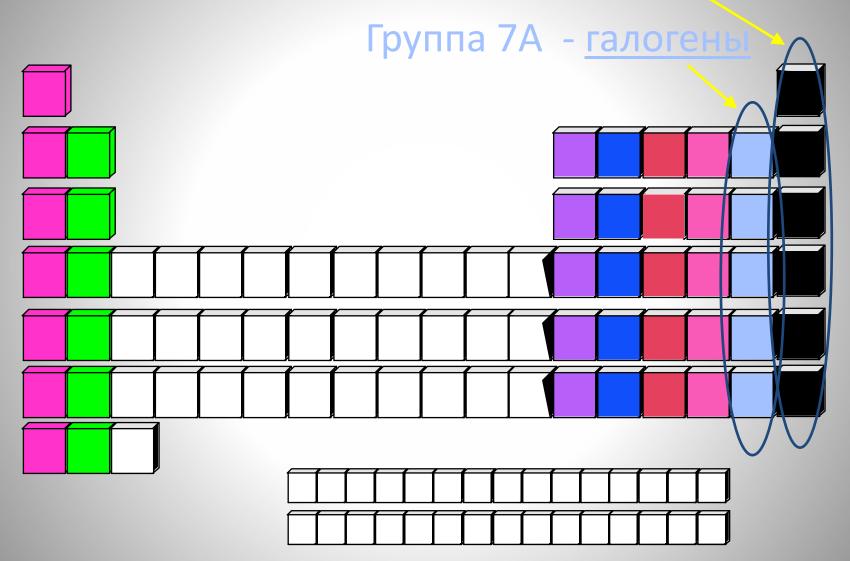
- 4 период (n=4): 18 элементов (4s¹⁻²3d¹⁻¹⁰4p¹⁻⁶)
- 5 период (n=5): 18 элементов (5s²4d¹⁰5p⁶)
- 6 период (n=6): 32 элемента (6s²4f¹⁴5d¹⁰6p⁶)
- 7 период (n=7): 32 элемента (7s²5f¹⁴6d¹⁰7p⁶), незавершенный

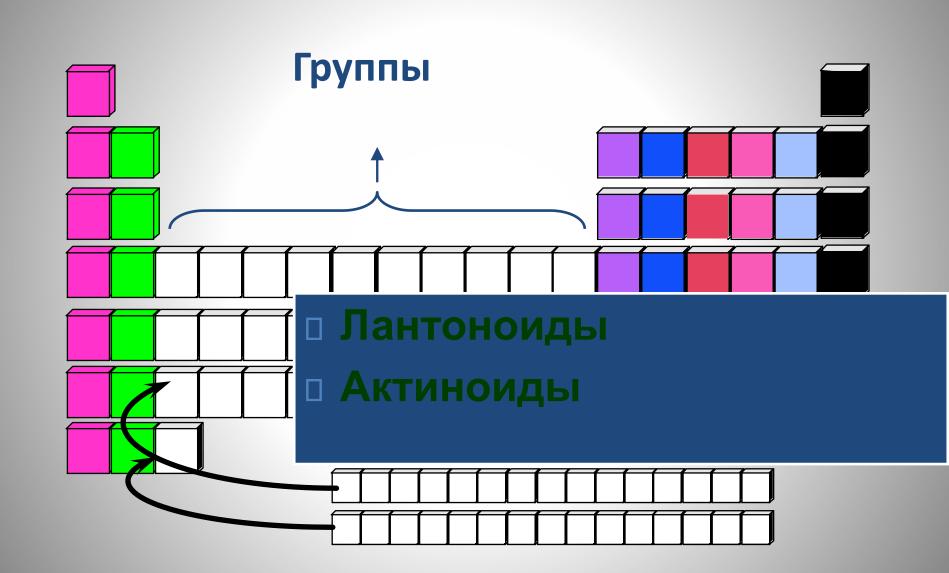

Группа - вертикальная последовательность элементов с однотипной электронной конфигурацией атомов, равным числом внешних электронов, одинаковой тах валентностью и похожими химическими свойствами.


Расположение электронов 20 первых элементов


	1	2	3	4	5	6	7	8
1	1							2
2	2,1	2,2	2,3	2,4	2,5	2,6	2,7	2,8
3	2,8,1	2,8,2	2,8,3	2,8,4	2,8,5	2,8,6	2,8,7	2,8,8
4	2,8,8,1	2,8,8,2						

- Общие электронные формулы валентного уровня в группах А:
- 1A группа ns1 щелочные металлы
- 2А группа ns²
- 3А группа ns²np¹
- 4А группа ns²np²
- 5А группа ns²np³
- 6А группа ns²np⁴
- 7А группа ns²np⁵- галогены
- 8А группа <u>ns²np⁶</u>- инертные газы


Группы



8А группа – инертные газы

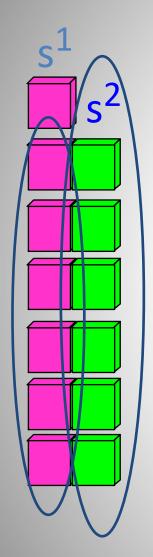
1А группа — щелочные металлы (но не Н) 2A группа (Ca, Sr, Ba — щелочноземельные металлы)

$$\frac{1}{1}$$

$$1s^2 2s^1$$

 $1s^2 2s^2 2p^6 3s^1$

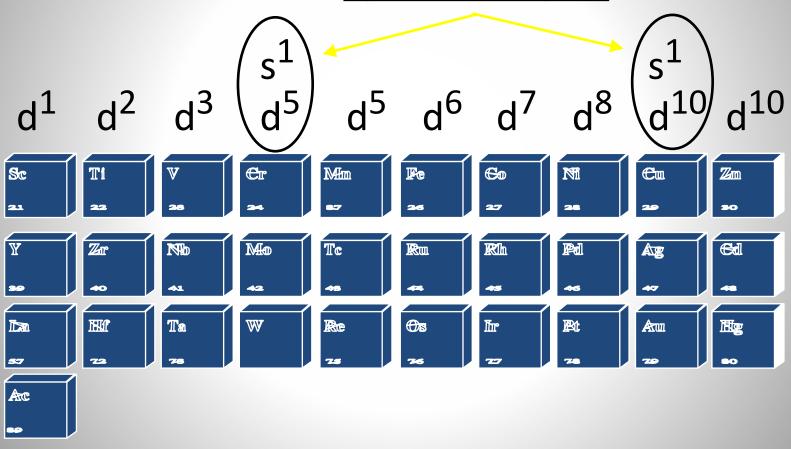
Электронная конфигурация щелочных металлов

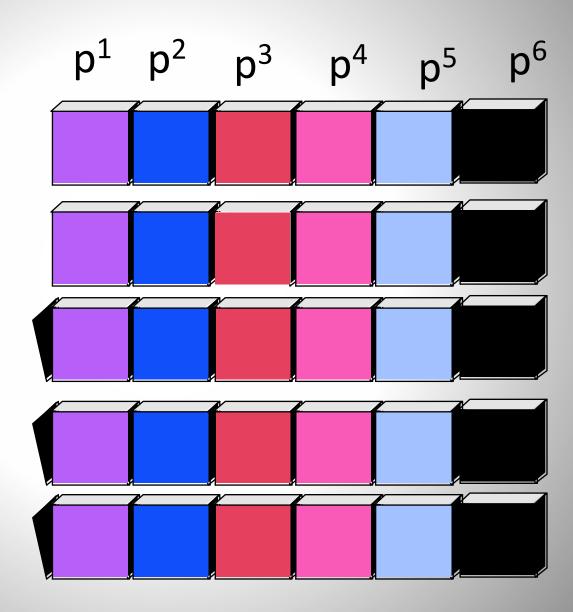

1s²2s²2p⁶3s²3p⁶4s¹

 $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^1$

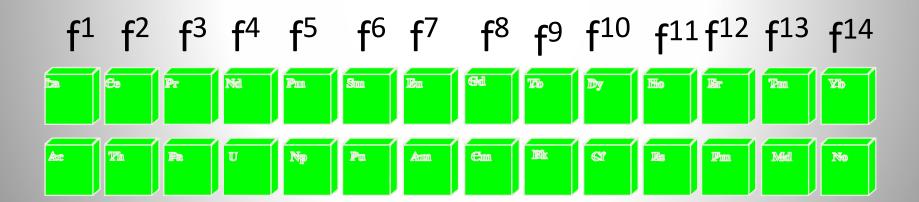
1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶5s²4d¹⁰ 5p⁶6s¹

 $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 6s^2 4f^{14} 5d^{10} 6p^6 7s^1$


Элементы <u>s-блока</u>

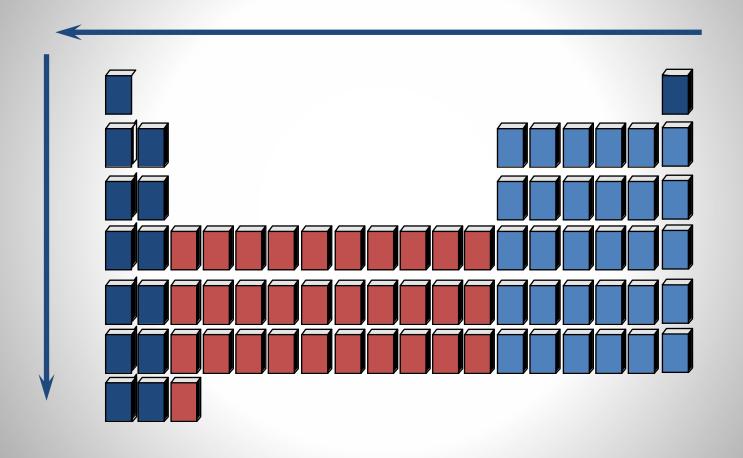


Переходные металлы – d-блок


Проскок электрона

Р-блок

F-блок


Периодичность характеристик элементов:

- атомные и ионные радиусы
- энергия ионизации
- сродство к электрону
- электроотрицательность
- валентность элементов

1. Орбитальный радиус атома (иона) — это расстояние от ядра до максимума электронной плотности наиболее удаленной орбитали этого атома, нм.

- В периодах слева направо радиус атома уменьшается.
- В группах сверху вниз радиус атома растет.

Орбитальный атомный радиус

Орбитальный радиус атома

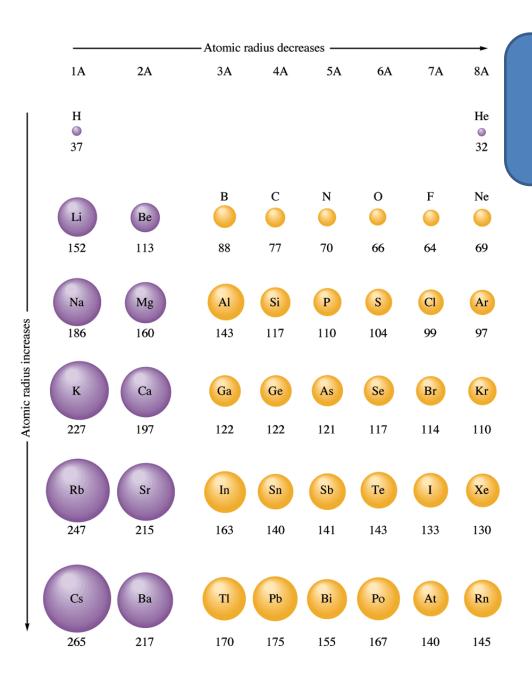
$$\mathbf{Li} - 2\mathbf{s}^{1} \oplus) \qquad \oplus)$$

$$\oplus$$

$$\oplus$$

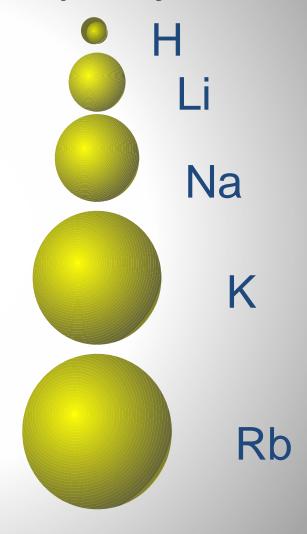
$$\oplus$$

Na-
$$3s^1 \oplus$$

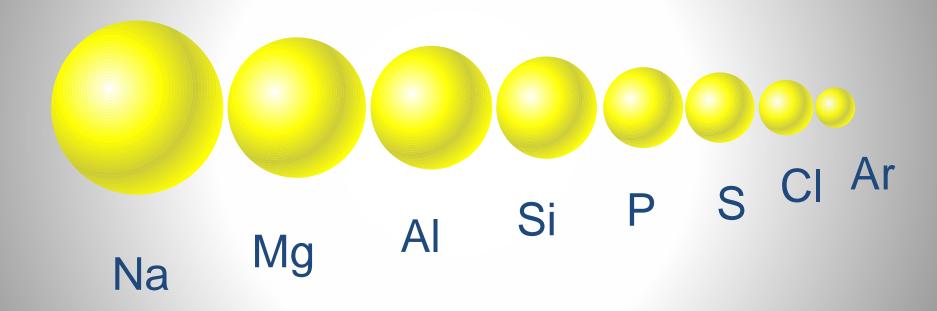

Радиус уменьшается

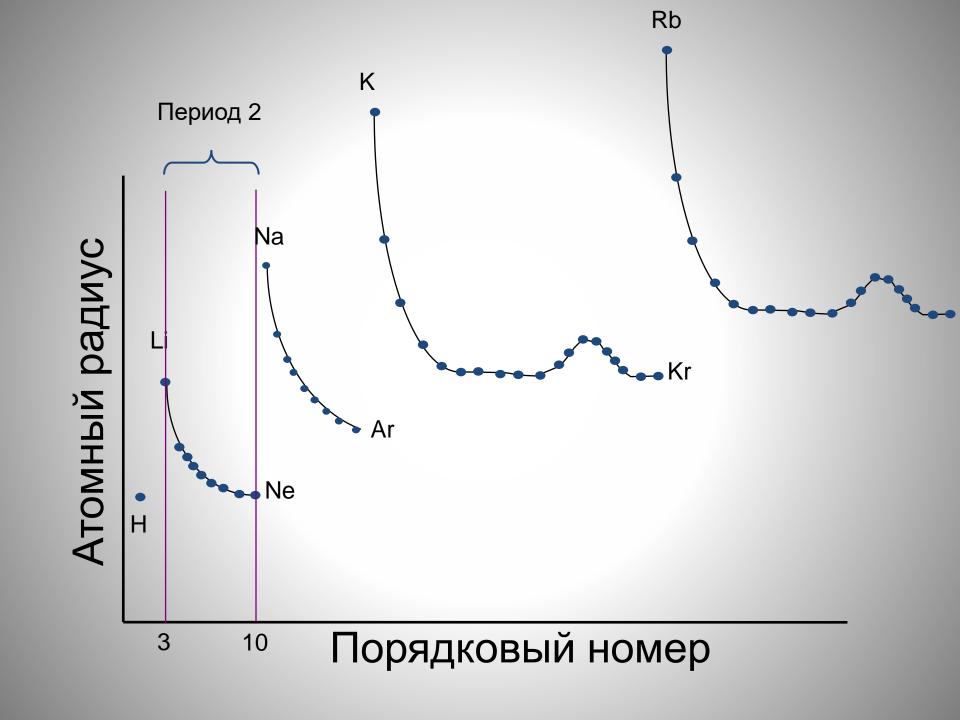
$$K-4s^1 \oplus)$$

$$\mathbf{Rb} - \mathbf{5s^1} \oplus)))$$


$$K-4s^1 \oplus)$$
) $Rb-5s^1 \oplus)$) $Rb-5s^1 \oplus)$) $Rb-5s^1 \oplus (Rb-5s^1 \oplus (R$

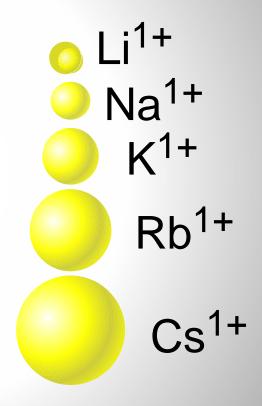
$$\mathbf{Fr} - 7\mathbf{s}^{1} \oplus))))))$$



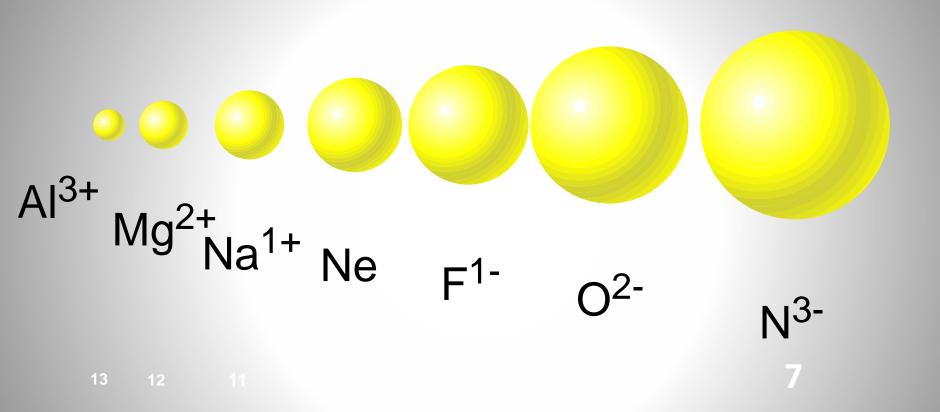

Орбитальный радиус атома

Орбитальный атомный радиус

Орбитальный атомный радиус

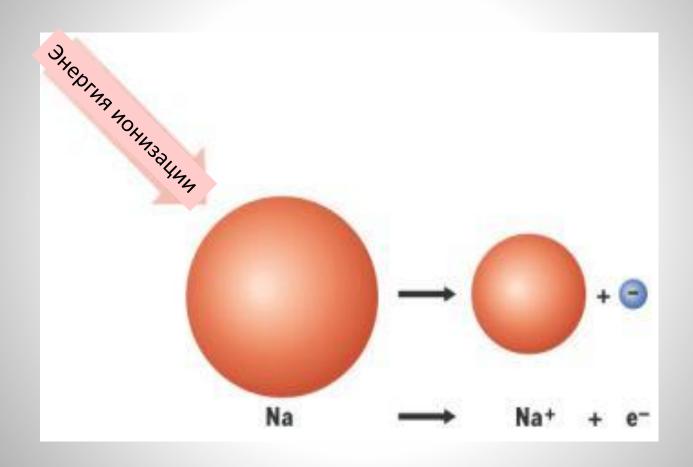


Превращение атома в катион – приводит к резкому уменьшению орбитального радиуса.

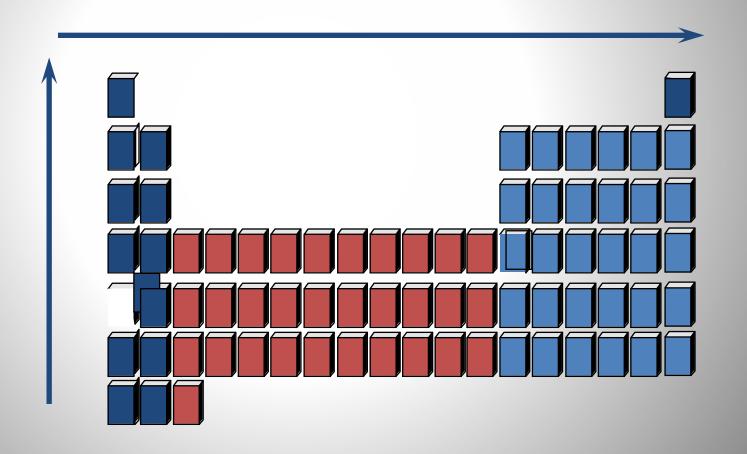

Превращение атома в анион почти не изменяет орбитального радиуса.

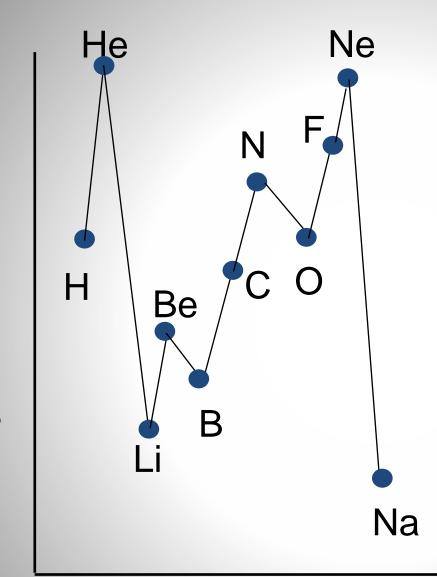
$$R_{\text{KAT}} < R_{\text{AT}} < R_{\text{AH}}$$
 $Cl^+ < Cl < Cl^ 0,099 \ 0,181 \text{HM}$

Орбитальный ионный радиус

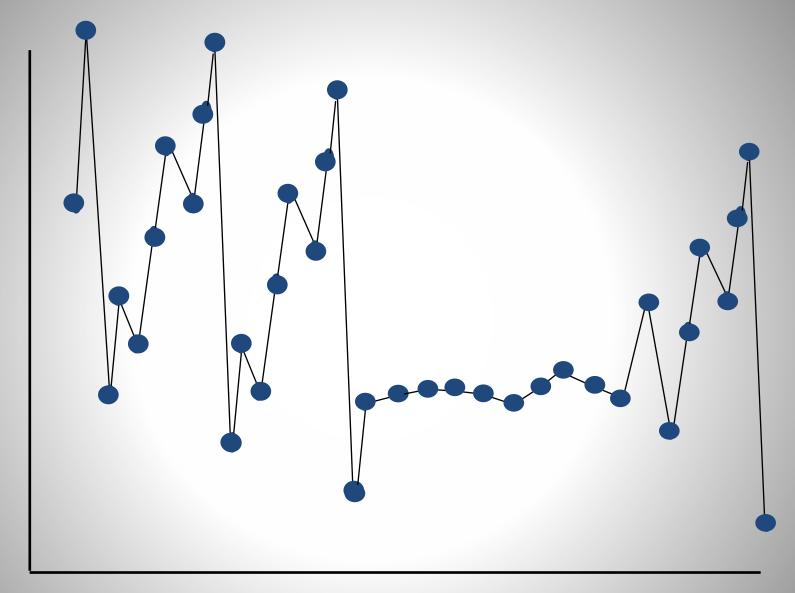


Орбитальный ионный радиус

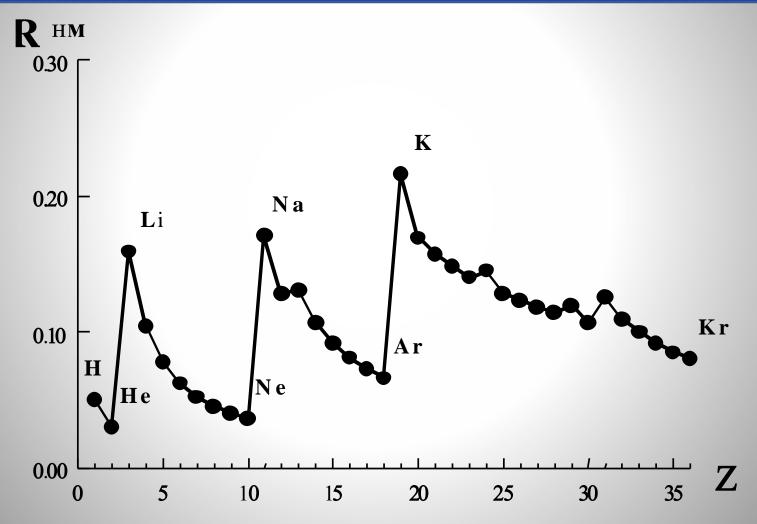



2. Энергия ионизации — это энергия, необходимая для отрыва электрона от атома и превращение атома в положительно заряженный ион Э — е = Э+, Еион [кДж/моль]

Энергия ионизации



Энергия отрыва каждого последующего электрона больше, чем предыдущего. С ростом радиуса энергия ионизации снижается.



Порядковый номер

Порядковый номер

Периодическая зависимость орбитального радиуса атома от порядкового номера элемента.

Энергия ионизации

Элемент	J_1
Li	5,39
Be	9,32
${f B}$	8,30
\mathbf{C}	11,26
N	14,53

3. Сродство к электрону - это энергия, выделяющаяся или поглощающаяся при захвате электрона атомом или энергия, необходимая для присоединения электрона к атому:

3 + e = 3, F [кДж/моль]

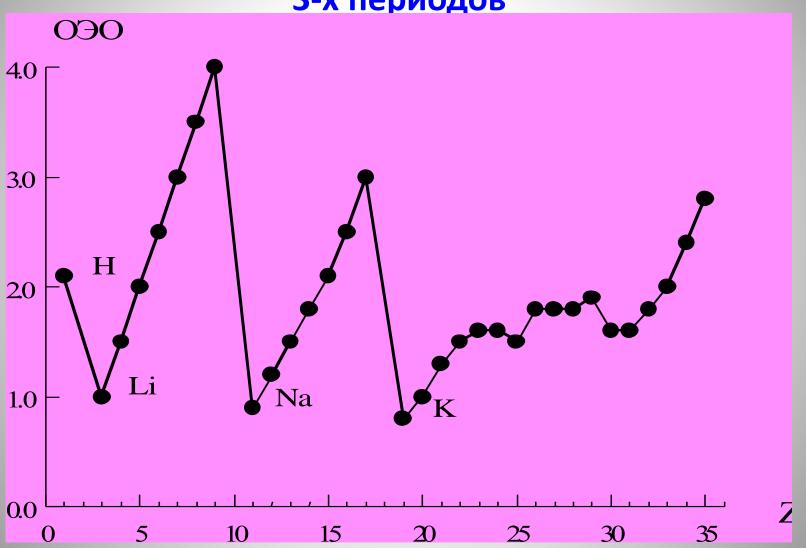
С ростом радиуса необходим более высокий уровень энергии для присоединения электрона. В группах сродство к электрону снижается, а в периодах - растет.

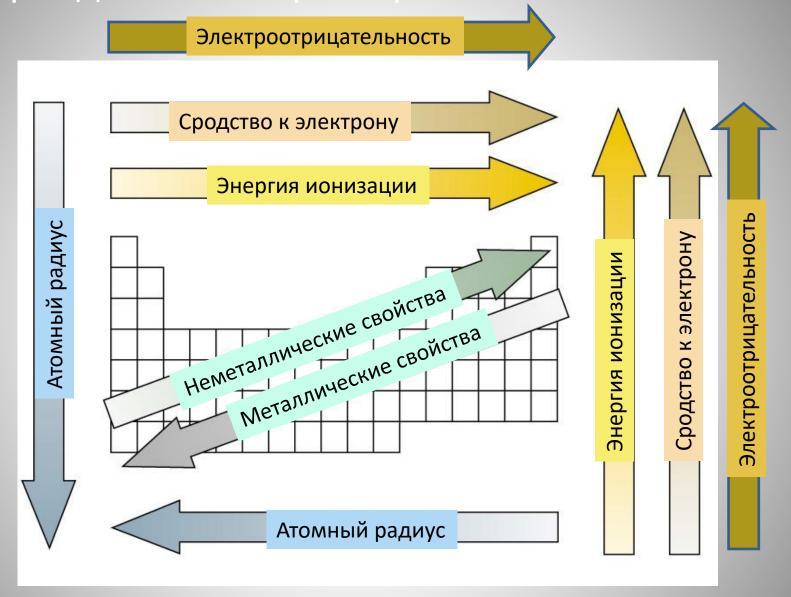
Периодичность изменения **F**

4. Электроотрицательность - свойство атома притягивать электроны от других атомов, с которыми он образует химическую связь в соединениях; Э.О. [отн. усл. ед.]. Э.О. = ½ (Еион + F)

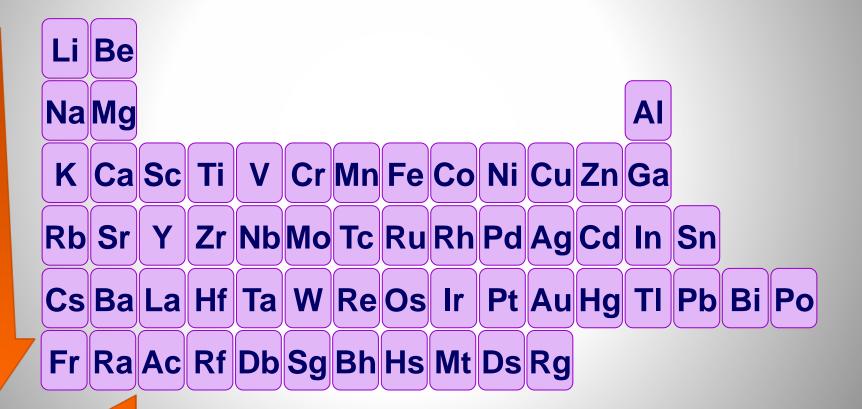
Электроотрицательность определяли Полинг, Малликен и др. ученые

• Максимальную электроотрицательность имеет атом фтора.

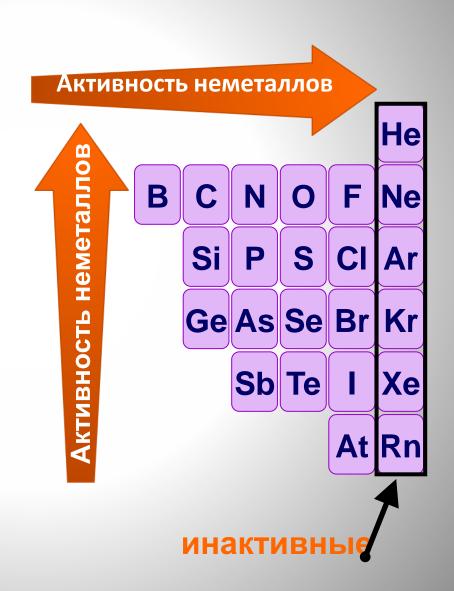

Относительные электроотрицательности ($\chi_{_{\Gamma}}$) элементов главных подгрупп


Лайнус Карл Полинг 1901 — 1994

$\overline{}$		$\overline{}$						
Н								He
2,2								1
Li	Be		В	С	N	0	F	Ne
1,0	1,6		2,0	2,5	3,0	3,5	4,0	1
Na	Mg		Al	Si	Р	S	Cl	Ar
0,9	1,3		1,6	1,9	2,2	2,6	3,2	1
K	Ca		Ga	Ge	As	Se	Br	Kr
0,8	1,0		1,8	2,0	2,2	2,6	3,0	-
Rb	Sr		In	Sn	Sb	Te	- 1	Xe
0,8	1,0		1,8	2,0	2,1	2,1	2,7	_
Cs	Ba		TI	Pb	Bi	Po	At	Rn
0,7	0,9		1,8	1,8	1,9	2,0	2,2	_

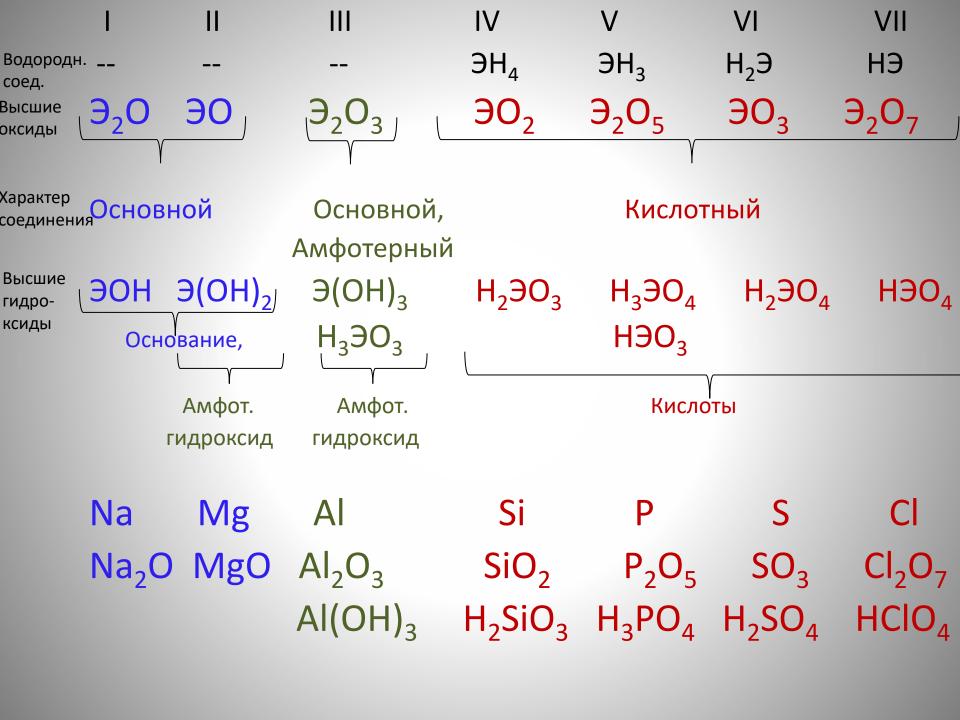

Электроотрицательность элементов первых 3-х периодов

Периодичность характеристик элементов



Активность металлов

Активность металлов


Активность неметаллов

Периодические свойства простых веществ и сложных соединений элементов

• Кислотно-основные свойства оксидов и гидроксидов:

В периодах основные свойства соединений уменьшаются, но увеличиваются кислотные свойства.

Кислотные свойства кислот, образованных элементами одного периода:

$$H_2SiO_3 - H_3PO_4 - HNO_3$$

усиливаются

В группах основные свойства соединений увеличиваются, а кислотные уменьшаются.

Кислотные свойства кислородсодержащих кислот, образованных элементами одной подгруппы:

- H₂SO₄
- H₂SeO₃
- **H**₆**TeO**₆

ослабевают

Кислотные свойства <u>бескислородных</u> <u>кислот</u>, образованных элементами одной подгруппы:

- HF
- HCl
- HBr
- HI

Кислотно-основные свойства для одного элемента зависят от степени его окисления:

MnO Mn_2O_3 MnO_2 MnO_3 Mn_2O_7 осн. слабо осн. амфот. кисл. кисл.

С увеличением степени окисления элемента растут кислотные свойства оксидов и гидроксидов, но ослабляются основные свойства.

Окислительная способность простых веществ и однотипных соединений: в периодах увеличивается; в группах уменьшается.

Термическая устойчивость однотипных солей:

в периодах уменьшается и возрастает их склонность к гидролизу; в группах увеличивается.

Свойства элементов

s-элементы

Металлы, d-элементы

сильные Металлы,

вос-ли слаб. вос-ли

р-элементы

90 и

окислительная

способность

- Периодическими являются многие другие свойства соединений: энергия химической связи, энтальпия, энергия Гиббса и др.
- Место химического элемента в ПС определяет его свойства и свойства его многих соединений.

Теория. Периодическая система и закон Д.И. Менделеева

Открытие Д.И. Менделеевым периодического закона

- 1. По мере накопления сведений о свойствах химических элементов возникла настоятельная необходимость их классификации. Ко времени открытия Д. И. Менделеевым периодического закона было известно уже более 60 элементов.
- 2. Многие химики пытались разрабатывать систематику элементов. Этим занимались А. Э. Б. Шанкуртуа во Франции, Л. Ю. Мейер и И. В. Деберейнер в Германии, Дж. А. К. Ньюлендс в Англии и др.
- 3. Так, Ньюлендс, размещая элементы в порядке возрастания их атомных масс, заметил, что химические свойства восьмого элемента подобны свойствам первого. Этой закономерности он дал название закон октав. Деберейнер составлял триады из сходных по химическим свойствам элементов и указывал, что в триадах атомная масса среднего элемента приблизительно равна среднему арифметическому атомных масс двух крайних элементов. Шанкуртуа разместил элементы в порядке возрастания их атомных масс по винтовой линии, описанной вокруг цилиндра. Сходные элементы при этом располагались друг под другом. Мейер, разместив элементы в порядке увеличения их атомных масс, получил шесть групп подобных элементов. Однако никто из названных исследователей не сумел за этими отдельными аналогиями увидеть один из основных законов химии.
- 4. Задача была решена в 1869 г. великим русским учёным Дмитрием Ивановичем Менделеевым. Открытый им периодический закон и созданная на его основе периодическая система элементов стали фундаментом современной химии.

Изучая свойства химических элементов, Д. И. Менделеев пришёл к выводу, что многие свойства определяются атомной массой элементов. Поэтому в основу систематики элементов он положил атомную массу как "точное, измеримое и никакому сомнению не подлежащее" свойство. По мнению Менделеева, "масса вещества есть именно свойство его, от которого должны находиться в зависимости все остальные свойства. Поэтому ближе или естественнее всего искать зависимость между свойствами и сходствами элементов, с одной стороны, и атомными весами их, с другой стороны".

Менделеев разместил все известные в то время элементы в порядке возрастания их атомных весов (масс) и обнаружил, что в полученном ряду наблюдается постепенное изменени свойств элементов. Например, в ряду от Li к F по мере увеличения атомной массы наблюдалось закономерное изменение химических свойств элементов и их соединений. Литий является типичным металлом, у следующего за ним элемента — бериллия — металлические свойства выражены уже значительно слабее. По величине атомной массы за бериллием идёт бор — элемент с неметаллическими

свойствами. В ряду элементов от углерода до фтора происходит усиление неметаллических свойств, и фтор уже выступает как типичный неметалл. Следующий за фтором элемент — натрий — резко отличается по свойствам от фтора, но проявляет большое сходство с литием. При переходе от натрия к хлору вновь наблюдается постепенное ослабление металлических и нарастание неметаллических свойств. Таким образом, через какое-то количество элементов, т.е через определенный период их свойства повторяются. Периодически повторяются не только химические свойства элементов, но и формулы их соединений. Например, литий образует с кислородом соединение состава Li2O; аналогичную формулу имеет соединение натрия с кислородом — Na2O. Д. И. Менделеев сформулировал открытый им закон так:

свойства простых тел, а также формулы и свойства соединений элементов находятся в периодической зависимости от величин атомных весов элементов.

Первый вариант периодической системы элементов Менделеев опубликовал в 1869 г. Все элементы он разместил в порядке увеличения их атомных масс, однако с таким расчётом, чтобы подобные по свойствам элементы оказались друг над другом. Сходные элементы, вошедшие в один вертикальны ряд, Менделеев объединил в группы. Последовательность элементов, в пределах которой закономерно изменяются свойства элементов от типичного металла до типичного неметалла, была названа периодом.

При составлении периодической системы Менделеев, беря за основу атомные массы элементов, не оставлял без внимания и их химические свойства. Так, в некоторых случаях в таблице нарушен принцип расположения элементов по возрастанию их атомных масс. Например, теллур, атомная масса которого больше атомной массы иода, стоит перед иодом. В противном случае иод находился бы в одной группе с серой, а не с хлором, с которым он проявляет большое сходство. Так же поступил учёный с парой элементов калий — аргон. Атомная масса калия меньше атомной массы аргона, однако в таблице калий был помещён после аргона и оказался в одной группе с другими щелочными металлами.

При составлении периодической системы Д. И. Менделееву пришлось преодолеть немало трудностей, связанных с тем, что одни элементы в то время ещё не были открыты, свойства других были мало изучены, атомные массы третьих были определены неправильно. Учёный глубоко верил в правильность открытого им закона, был твёрдо убеждён в том, что периодический закон отражает объективную реальность. На основании периодической системы он исправил атомные массы ряда элементов, предсказал существование в природе нескольких ещё не открытых элементов и даже описал свойства этих элементов и их соединений.

Эти элементы были открыты в течение последующих пятнадцати лет: в 1875 г. П. Э. Лекок де Буабодран открыл элемент номер 31, назвав его галлием; в 1879 г. Л. Ф. Нильсон открыл элемент номер 21 и назвал его

скандием; в 1886 году К. А. Винклер открыл элемент 32, который был назван германием.

Менделеев предсказал физические и химические свойства этих трёх элементов на основании свойств окружающих их в таблице элементов. Например, атомную массу и плотность элемента номер 21 он рассчитал как среднее арифметическое атомных масс и плотностей бора, иттрия, кальция и титана.

Ниже в качестве примера приведены свойства элемента с порядковым номером 32 — германия, которые были предсказаны Менделеевым и впоследствии экспериментально подтверждены Винклером.

Свойства элемента № 32,	Свойства германия, установленные
атомная масса — 72;	атомная масса — 72,6;
серый тугоплавкий металл;	серый тугоплавкий металл;
плотность — $5,5 \text{ г/см}^3$;	плотность — $5,35 \text{г/см}^3$;
должен получаться восстановлением	получается восстановлением оксида
оксида водородом;	водородом;
формула оксида — ЭО2;	формула оксида — GeO2;
плотность оксида — $4,7 \text{ г/см}^3$;	плотность оксида — $4,7 \text{г/см}^3$;
хлорид ЭСl ₄ — жидкость;	хлорид GeCl ₄ — жидкость;
плотность ЭСl ₄ — 1,9 г/см ³ ;	плотность GeCl ₄ — 1,887 г/см ³ ;
температура кипения ЭСl ₄ — 90 °С.	температура кипения GeCl ₄ — 90 °C.

Открытие предвиденных Менделеевым элементов и блестящее совпадение предсказанных им свойств с установленными опытным путём привело к всеобщему признанию периодического закона.

Следует отметить, что Менделеев сомневался в возможности резкого перехода от таких активных неметаллов, какими являются галогены, к щелочным металлам. Он полагал, что этот переход должен быть более плавным. Вскоре это научное предвидение оправдалось: были открыты инертные газы. В периодической системе не было свободных мест для этих элементов, и они были выделены в самостоятельную группу. С целью подчеркнуть большую химическую инертность этих элементов группа была названа нулевой.

В настоящее время известно много вариантов периодической системы элементов, однако наиболее удобной остаётся таблица, предложенная Д. И. Менделеевым. В первоначальный вариант таблицы позже были внесены некоторые дополнения. Часть из них была сделана самим учёным.

К настоящему времени получен ряд соединений тяжёлых благородных газов, в которых степень окисления составляет +6 и +8 (XeF₆, XeO₃, XeO₄ и др.). В связи с этим инертные газы включены в восьмую группу периодической системы, в которой они составляют главную подгруппу.

2.2.2. Периодическая система элементов Д. И. Менделеева

Современная периодическая система элементов имеет семь периодов, из которых I, II и III называются малыми периодами, а IV, V, VI и VI — большими периодами. I, II и III периоды содержат по одному ряду элементов, IV, V и VI — по два ряда, VII период незаконченный. Все периоды, за исключением I, содержащего лишь два элемента, начинаются щелочным металлом и заканчиваются благородным газом.

В больших периодах изменение свойств при переходе от активного металла к благородному газу происходит более плавно, чем в малых периодах. Большие периоды состоят из чётных и нечётных рядов. В этих периодах наблюдается двойная периодичность: помимо характерного для всех периодов изменения свойств от щелочного металла до благородного газа наблюдается также изменение свойств в пределах чётного ряда и отдельно — в пределах нечётного ряда. Например, в чётном ряду IV периода валентность изменяется от 1 у калия до 7 у марганца; после триады железо – кобальт — никель происходит такое же изменение валентности в нечётном ряду: от 1 у меди до 7 у брома. Подобная двойная периодичность наблюдается и в других больших периодах.

У элементов чётных рядов преобладают металлические свойства, и их ослабление справа налево замедленно. В нечётных рядах происходит заметное ослабление металлических свойств и усиление неметаллических.

Особое положение в периодической системе занимают элемент номер 57 — лантан — и следующие за ним 14 элементов, объединённых под названием лантаноиды. Эти элементы по химическим свойствам похожи на лантан и очень сходны между собой. Поэтому в периодической системе лантану и лантаноидам отведена одна клетка. Аналогичным образом в одну клетку VII периода помещены элемент номер 89 — актиний — и следующие за ним 14 элементов — так называемые актиноиды. Элементы II и III периодов Менделеев назвал *типическими*. Подгруппы, содержащие типические элементы, называются *главными*. Элементы чётных рядов (для I и II групп — нечётных) составляют *побочные подгруппы*.

Элементы главных подгрупп по химическим свойствам значительно отличаются от элементов побочных подгрупп. Особенно наглядно это различие в VII и VIII группах периодической системы элементов. Например, главную подгруппу в VIII группе составляют благородные газы He, Ne, Ar, Kr, Xe, Rn, а побочная подгруппа представлена триадами элементов: Fe, Co, Ni — в IV периоде, Ru, Rh, Pd — в V периоде, Os, Ir, Pt — в VI периоде. В отличие от благородных газов названные элементы имеют ярко выраженные металлические свойства.

Номер группы, как правило, показывает высшую валентность элемента по кислороду. Ряд исключений существует для элементов подгруппы меди, VII и VIII групп. Так, медь, серебро и золото образуют соединения, в которых валентность этих элементов достигает 3. Элемент VII группы — фтор — имеет только валентность 1, а высшая валентность других элементов по кислороду равна 7. В VIII группе валентность 8 проявляют только осмий, рутений и ксенон.

Элементы главных подгрупп характеризуются также валентностью по водороду. Летучие водородные соединения образуют элементы IV, V, VI и VII групп. Валентность по водороду при переходе от элементов IV группы к элементам VII группы уменьшается от 4 до 1. Напротив, валентность этих элементов по кислороду в том же направлении возрастает от 4 до 7.

1. Характеристика свойств химических элементов.

- 1.1. Составить *схемы* электронных конфигураций атомов химических элементов. Подчеркнуть валентные электроны.
- 1.2. Нарисовать схему распределения валентных электронов по орбиталям в основном и возбужденном состоянии.
- 1.2.1. Определить валентные возможности атомов химических элементов;
- 1.2.2. Определить возможные степени окисления;
- 1.3. Проанализировать ход изменения параметров:
- а) размеры атомов;
- б) энергия ионизации;
- в) сродство к электрону;
- г) электроотрицательность;
- д) установить внутреннюю периодичность по периодам и вторичную периодичность по группам.
- 1.4. установить распространенность химических элементов в природе.

СВОЙСТВА АТОМОВ

Радиус атома

- Атомный радиус радиус нейтрального атома
- Ионные радиусы радиусы заряженных ионов
- Радиусы анионов отрицательных ионов больше радиусов нейтральных атомов
- **Р**адиусы **катионов** положительных ионов **меньше**) радиусов нейтральных атомов

Радиус атома

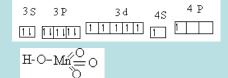
- 🥏 по периоду уменьшается слева направо, т.к. рост заряда ядра
- По группе увеличивается сверху вниз, т.к. рост энергетических уровней
- Радиус атома и сумма электронов на последнем энергетическом уровне являются основными характеристиками атома, так как они определяют все остальные свойства атомов

- Металличность определяется легкостью отдачи электронов
- Неметалличность определяется легкостью присоединения электронов
- *Сродство к электрону Е* энергия, которая *выделяется или поглощается* на присоединение одного электрона к нейтральному атому, с превращением его в отрицательный ион
- Электроотрицательность полусумма энергии ионизации и сродства к электрону

$$\Theta O = \frac{E + I}{2}$$

- Абсолютная электроотрицательность
- Относительная электроотрицательность (за единицу принята электроотрицательность лития
- Самая большая электроотрицательность фтора

Окислительно-восстановительные свойства


- **Окислители** в большей степени хорошо *присоединяют* электроны (неметаллы)
 - ▶ Восстановители в большей степени хорошо отдают электроны (металлы)

MEMICHALINE EBUŠETS SUICMICHTUB INO MCDAQUAMI W TDYMIAM

	Характер изменения при движении в таблице					
	по периодам слева направо	по группам сверху вниз				
Заряд ядра	увеличивается	увеличивается				
Число электронных слоёв	не изменяется	увеличивается				
Число электронов на внешнем энергетическом уровне	В малых периодах и нечётных рядах больших периодов увеличивается от 1 до 8 в четных рядах больших периодов равно 2 ²	не изменяется				
Радиус атома	уменьшается	увеличивается				
Энергия ионизации	увеличивается	уменьшается				
Сродство к электрону	увеличивается	уменьшается				
Электроотрицательность ЭО	увеличивается	уменьшается				
Металличность элемента	ослабевает	усиливается				
Неметалличность	усиливается	ослабевает				
Окислительная способность	усиливается	ослабевает				
Восстановительная способность	ослабевает	усиливается				

Характеристика элемента по положению в ПСМ - Марганец

- Порядковый номер: 25.
- Следовательно, заряд ядра +25, протонов: 25, нейтронов: 55-25=30
- Период 4. Следовательно 4 энергетических уровня
- Электронная конфигурация: 1 s^2 2 s^2 p^6 3 s^2 p^6 4 s^2 3 d^5

- Металл
- Валентность 7
- Высшая степень окисления Mn+7 -окислитель
- Оксид -Mn₂O₇
- Гидроксид -HMnO₄

Периодический закон

Примеры решения типовых заданий

Пример 1. Составьте электронную формулу атома ванадия, подчеркните валентные электроны. Распределите электроны этого атома по квантовым ячейкам. К какому электронному семейству относится этот элемент?

Решение. Порядковый номер элемента в периодической системе совпадает с величиной заряда ядра, т.е. индекс внизу слева символа элемента указывает на количество протонов в ядре, следовательно, в ядре ванадия имеется 23 протона. Число нейтронов равняется разности между массовым числом (индекс вверху слева символа) и порядковым номером элемента, следовательно, в ядре $^{51}_{23}$ V находится 28 нейтронов (51 – 23) = 28.

Электронные формулы отображают распределение электронов в атоме по энергетическим уровням и подуровням. При этом следует учитывать, что электрон занимает тот энергетический подуровень, на котором он будет обладать наименьшей энергией. Так как число электронов в атоме элемента равно заряду ядра, т.е. его порядковому номеру в таблице Д.И. Менделеева, то для элемента № 23 — ванадия электронная формула, согласно шкале энергий (правило Клечковского), будет:

$$_{23}$$
V $1s^22s^22p^63s^23p^6\underline{4s^23d^3}$

Электронографические схемы отражают распределение электронов атомов по квантовым (энергетическим) ячейкам. В каждой квантовой ячейке может быть не более двух электронов с противоположными спинами (принцип Паули). Орбитали данного подуровня заполняются сначала по одному электрону с одинаковыми спинами, а затем по второму электрону с противоположными спинами (правило Хунда).

	\boldsymbol{S}											
n = 1	$\uparrow \downarrow$		p									
n = 2	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$		(d					
n = 3	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	\uparrow	\uparrow	\uparrow					
n = 4	$\uparrow \downarrow$											

Последний, 23-й электрон атома ванадия занимает d-орбиталь, следовательно, относится к d-электронному семейству.

Пример 2. Определить квантовые числа электрона $2p^4$, учитывая, что заполнение орбиталей начинается с электронов, обладающих спином +1/2.

Решение. Электрон $2p^4$ находится на втором энергетическом уровне, поэтому главное квантовое число равно n=2. На этом уровне есть атомные орбитали со значениями l=0 и 1, что соответствует s- и p-орбиталям. Данный электрон занимает p-орбиталь, следовательно, орбитальное квантовое число l=1. Магнитные числа таких орбиталей имеют значения -1, 0 и 1. Четвертый электрон займет орбиталь со значением $m_l=-1$, а спин

такого электрона будет: -1/2. $\uparrow \downarrow \qquad \uparrow \qquad \uparrow$ $-1 \qquad 0 \qquad +1$

Пример 3. Исходя из положения калия, рубидия, брома, селена и азота в периодической системе составьте формулы следующих соединений: бромида калия, селенида рубидия, нитрида кальция.

Решение. Перечисленные вещества представляют собой соединения типичных металлов (K, Rb, Ca) с типичными неметаллами (Br, Se, N), в которых последние проявляют низшую степень окисления. К и Rb — элементы I главной подгруппы, следовательно, в соединениях они проявляют степень окисления +1. Са — элемент II главной подгруппы проявляет степень окисления +2.

Низшая степень окисления определяется тем условным зарядом, который приобретает атом, присоединяя такое количество электронов, которое необходимо для образования устойчивой восьмиэлектронной оболочки. Вг, Se, N находятся соответственно в VII, VI и V главных подгруппах и имеют структуру внешнего энергетического уровня $4s^24p^5$; $4s^24p^4$; $2s^22p^3$. Следовательно, низшие степени окисления у этих элементов будут равны: -1(Br), -2 (Se), -3 (N).

Исходя из того положения, что молекулы электронейтральны (т.е. сумма положительных и отрицательных зарядов равна нулю) составляем соответствующие формулы: бромид калия KBr; селенид рубидия Rb_2Se ; нитрид кальция Ca_3N_2 .