Теория. Строение атома

Справочные материалы

	Вопрос	Ответ
1	Какое строение имеет атом	Атом — это электронейтральная частица, которая состоит из положительно заряженного ядра и отрицательно заряженных электронов. Вся масса заключена в ядре, которое находится в центре атома. Электрон Ядро Орбиталь
2	Какое строение имеет ядро?	Ядро состоит из элементарных частиц, они называются протоны и нейтроны.
3	Какая характеристика протона	Протон заряжен положительно, его обозначение $p+$ или $\frac{1}{1}p$. Он имеет относительную атомную массу = 1. Число протонов $N(p+)$ равно заряду ядра (Z) и порядковому номеру элемента $N(p+)=Z$
4	Какая характеристика нейтрона	Нейтрон не заряжен, т.е. заряд =0, его относительная атомная масса =1. Его обозначение $\frac{1}{0}n$
5	Как связаны протны и нейтроны	Сумма числа нейтронов $N(n0)$, и числа протонов называется атомной массой и обозначается буквой $Ar Ar = Z + N(n^0)$.
6	Какая характеристика электрона	Электрон несет отрицательный заряд. Его обозначение e^- . Масса электрона очень маленькая, она равна $1/1840$ от массы атома. Абсолютная масса атома порядка $\approx 10^{-23}$
7	Какие частицы получается при изменении числа протонов, нейтронов и электронов	ec ли изменяется число $e^{-} \qquad {}^{l}_{0} n \qquad {}^{l}_{1} p \qquad $
8	Как составить уравнение ядерной реакции	Правило. Сумма зарядов и масс исходных частиц и полученных должны быть равны

		Ядерной реакцией называется процесс взаимодействия атомного ядра с элементарной частицей или другим ядром. Например ${}^{7}_{3} \text{Li} + {}^{1}_{1} \text{H} \longrightarrow {}^{4}_{2} \text{He} + {}^{4}_{2} \text{He}$ Так как ядро водорода состоит из одного протона и одного, то его в ядерных реакциях могут обозначать как изотоп водорода (1) т.е. ${}^{1}_{1} \text{H}$ Атомы гелия в ядерных реакциях обозначают как альфа-частицы обозначение α $\alpha + {}^{14}_{7} \text{N} \longrightarrow {}^{17}_{8} \text{O} + p$ Ядерные реакции записывают и так:
9	Основные положения квантовой механики	 Энергия испускается и поглощается телами отдельными порциями—квантами Электрон имеет двойственную природу. Он можетвести себя как частицы и волна. Длина волны может быть рассчитана \[\frac{h}{mv}, \] m – относится к частице, λ-длина волны. Для движущихся электронов невозможно определить точное положение (Принцип неопределенности Гейзенберга) Электрон движется не по определенным орбитам, а может находиться в любой точке пространства вокруг ядра. Описывать местоположение электрона принято при помощи понятия «вероятности».
10	Что такое электронное облако?	Пространство вокруг ядра, где можно обнаружить электрон с вероятностью в 100 %
11	Что такое электронная орбиталь?	Пространство вокруг ядра. Где можно обнаружить электрон с вероятностью в 90 %.
12	Как характеризовать энергию электрона?	Энергию электрона характеризуют при помощи 4-х квантовых чисел. n - главное квантовое число l — побочное или орбитальное квантовое число m — магнитное квантовое число s — спиновое число или просто спин
13	Характеристика <i>п</i>	Принимает значения 1,2,3 Ф Физический смысл— радиус электронного облака Равно номеру периода в ПС Электроны с одинаковым п относят к одному электронному уровню.
14	Характеристика <i>l</i> . Подуровни	Принимает значение $l=n-1$ Определяет форму электронного облака $n=1,\ l=0,$ обозначается буквой $s-$ форма шара $n=2,\ l=1,$ обозначается буквой $p-$ форма гантели $n=3,\ l=2$ обозначается буквой d

		n=4, $l=3$ обозначается буквой f (нет визуализации)
		l=0 $l=2$
		Электроны с одинаковым <u>п, <i>l</i></u> относятся к одному <u>подуровню.</u> Число подуровней равно номеру уровня
15	Характеристика т	m=2l+1, обозначает количество направлений в пространстве. Электроны с одинаковым n , l , m относят k одной орбитали. Графически обозначают квадратом. $n=1$ $l=0$ $m=1$ $n=2$ $l=1$ $m=3$
		n=3 <i>l</i> =2 <i>m</i> =5
16	Характеристика спина	<i>Cnuн</i> — это собственный момент движения электрона. Равен «+1/2» и «−1/2»
17	По каким правилам заполняются орбитали?	1. Принцип наименьшей энергии: Электроны заполняют орбитали в порядке повышения их энергии, так сначала заполняется первый уровень, потом 2-й и т.д. Последовательность подуровней s-p-d- f. 2. Запрет Паули: В атоме не может быть двух электронов со всеми одинаковыми квантовыми числами. Это значит, что в одной орбитали не может быть три электрона. 3. Правило Хунда. В пределах одного подуровня электроны располагаются таким образом, что суммарное значение спина должно быть максимальным. Это значит подуровень заполняется сначала по одному электрону, потом добавляются следующие
18	Как составить схему электронной конфигурации	Схемы удобно составлять по периодической таблице. С ростом заряда на 1 прибавляется и 1 электрон. Поэтому каждый последующий элемент повторяет электронное строение предыдущего. Например, Н: стоит в первом периоде, следовательно, у него 1 уровень, на нем 1 подуровень S и на нем 1 электрон 1s¹, графическая схема , у гелия 1s². 2S 2P Литий имеет строение 1S¹ 2S1

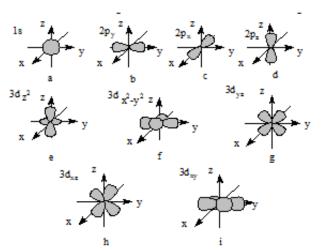


Рисунок 1 – направления в пространстве орбиталей

Тема: Строение атома

ПРИМЕРЫ ТИПОВЫХ ТЕСТОВЫХ ЗАДАНИЙ

- 1. В электронейтральном атоме число протонов всегда равно:
- 1)числу нейтронов;
- 2)числу электронов;
- 3) сумме чисел нейтронов и электронов;
- 4) разнице между нуклонным числом и числом нейтронов

Ответ: 2,4. 2-так как число плюсов должно быть равно числу минусов для нейтральности. 4- так как нуклонное число – это сумма протонов и нейтронов.

- 2. Нуклиды элемента называются:
- 1) нуклонами;
- 2) изомерами;
- 3) аллотропными модификациями;
- 4) изотопами

Ответ 4, так как нуклид – это электронейтральный или заряженный атом с определенными значениями атомного номера (заряда ядра) и массового числа.

- 3. Укажите атомный номер элемента 41 θ , в ядре 41 θ атома которого находятся 20 нейтронов
 - 1)20 2)21
 - 3)41 4)61

Ответ: 2 так как 41(сумма протонов и нейтронов) минус 20 = 21

- 4. 4 нейтрона содержится в ядре нуклида
- 1) ⁴He
- 2) ⁷Li
- $3)^{3}H$
- $4)^{2}H$

Ответ:2, так как от массового числа (вверху) следует отнять порядковый номер: 7 - 3 = 45. РАСЧЕТНАЯ ЗАДАЧА, ВЫНОСИТСЯ НА ПИСЬМЕННЫЙ ЭКЗАМЕН!

Образец рубидия содержит нуклиды ⁸⁵Rb и ⁸⁷Rb Мольная доля нуклида ⁸⁷Rb равна 25%. Рассчитать относительную атомную массу элемента рубидия в этом образце

- 1) 84,5
- 2) 85,5
- 3) 86.5
- 4) 87.5

Ответ:2 Решение

Пусть имеется образец количеством вещества 1моль. Тогда доля ⁸⁷Rb равна 0,25, а доля равно 0,75. Средняя относительная атомная масса химического элемента равна 0.25*87+0.75*85=63.75+21.75=85.5 (Знак * означает умножить)

6. Укажите символ частицы X в уравнении ядерной реакции

$$_{26}^{56}Fe + {}_{0}^{1}n = {}_{1}^{1}p + X$$

- 1) $_{25}^{55}$ Mn 2) $_{25}^{56}$ Mn
- 3) $_{26}^{56}$ Fe
- $4)_{26}^{55}$ Fe

Ответ: 2, так как (26+0-1=25) – равенство зарядов, а (56+1-1=56) – равенство массового числа.

- 7. Укажите символы НЕВОЗМОЖНЫХ энергетических подуровней
- 1) 2p
- 2)5s
- 4) 2d

Ответ: 3 – так как на первом уровне только один подуровень-s, 4 – так как на втором уровне только два подуровня s, p

8. Укажите сокращенную электронную конфигурацию иона Sc^{3+} в основном состоянии

- 1) ... $3s^2 3p^6 3d^1 4s^2$
- 2) ... $3s^2 3p^6 3d^1$ 3) ... $3s^2 3p^6$
- 4) ... $3s^2 3p^6 4s^2$

Ответ: 3, так как атом скандия имеет строение предвнешнего и внешнего уровня ... $3s^2$ $3p^63d^1$ $4s^2$, но так как 3 электрона отсутствует (заряд три плюса, следовательно, не хватает трех электронов), то остается $3s^2$ $3p^6$

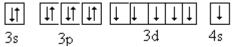
9. Укажите электронно-графическую схему основного состояния атома

Ответ: 2, в первой структуре нарушено правило наименьшей энергии, в 3-й структуре, принцип Паули – все 4 квантовые характеристики одинаковые в паре р-электронов, в 4-й структуре нарушено правило Хунда, суммарный спин минимальный.

- 10. Когда 3р подуровень заполнен, следующий электрон заполняет подуровень
- 1) *3d*
- 2) *4p*
- 3) 4s
- 4) 4f

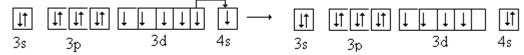
Ответ: 3, так как по правилу Клечковского сумма главного и побочного числа равна 4+0=4, у 3р-подуровня эта сумма равна 3+1=4, у 4p сумма равна 4+1=5, у 4f сумма равна 4+4+3=7.

ОБРАЗЕЦ КОМБИНИРОВАННОГО ЗАДАНИЯ


Условие. Составьте схему электронного строения и электронно-графическую схему атома хрома.

- 1) охарактеризуйте на этом примере квантовые числа;
- 2) сформулируйте правило Хунда, на этом примере, где оно применяется; почему не завершен 4s- подуровень?
- 3) к какому семейству относится этот элемент;
- 4) что изменится в возбужденном состоянии атома?

Решение.


 $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$

Строение предвнешнего и внешнего уровня:

- 1) главное квантовое число равно 4, так как элемент стоит в 4 периоде. Это значит, что имеется 4 уровня, 1,2,3, 4-й. На первом только s-подуровень, на втором - s и p подуровень на третьем s, p, d-подуровни. Число подуровней равно номеру уровня. Sорбитали имеют сферическую форму, р-орбитали – форму гантели.
- 2) В пределах одного подуровня электроны заполняют орбитали таким образом, чтобы сумма их спинов была максимальной. В данном примере на 3d- орбитали должно быть на каждой орбитали по одному электрону, но так как устойчивому состоянию отвечает наполовину заполненный подуровень, то электроны с последнего 4-го уровня переходят «проскакивают, проваливаются» на предпоследний слой;
- 3) так как впоследнюю очередь заполняется d-подуровень, то хром относится к dметаллам;

В возбужденном состоянии схема такая

